Whitepaper: Quantum Emotions - A Framework for Emotionally Enhanced Artificial Intelligence Using Quantum Computing
- Martin Döhring
- vor 19 Stunden
- 3 Min. Lesezeit
Authors: [Martin Wilhelm Döhring]
Date: July 2025
Abstract
This whitepaper proposes a conceptual and technological framework for implementing emotion-inspired dynamics in artificial intelligence (AI) through the principles of quantum computing. It introduces "Quantum Emotions" (QE) as quantum-enhanced affective states represented via qubit systems, enabling probabilistic, dynamic, and non-deterministic emotional modeling in AI agents.
1. Introduction
Human cognition is inseparable from emotions. Classical computing systems simulate emotional responses via weighted rules or neural networks. However, these lack the fluidity and uncertainty intrinsic to real emotional experiences. Quantum computing, with its native support for superposition, entanglement, and probabilistic evolution, offers a unique substrate for modeling such qualities.
We introduce Quantum Emotion Qubits (QEQs) to represent and process emotional states in AI agents. These quantum states dynamically evolve in response to environmental stimuli, internal goals, or interactions, and influence decision-making.

2. Background
2.1 Emotional Models in AI
Traditional affective computing systems use models like:
Russell's Circumplex Model (valence vs. arousal)
Plutchik's Wheel of Emotions
Discrete models (e.g., Ekman's six basic emotions)
These models are deterministic or fuzzy but inherently classical.
2.2 Principles of Quantum Computing
Key principles relevant to emotion modeling:
Superposition: Emotional states can co-exist before measurement
Entanglement: Emotions between agents or modalities can be linked
Measurement: An external input collapses emotional uncertainty into a reaction
3. Quantum Emotion Qubit (QEQ) Design
Each emotion is mapped to a basis state on the Bloch sphere:
|0⟩ → Joy
|1⟩ → Sadness
Superposition states: mixtures (e.g., ambivalence, empathy)
A single QEQ can be rotated via Pauli/Y-gates to represent changing affective influence:
qc.ry(theta, 0) # theta defines emotional weight from input
Emotional collapse is triggered by input stimulus (e.g. natural language, image):
qc.measure(0, 0)
4. System Architecture
Components:
Emotion Engine (Quantum Layer): Qubit state preparation, evolution, and measurement
Stimulus Parser (Classical AI): NLP or sensory interpretation mapped to qubit rotations
Behavioral Modulator: Determines AI response based on qubit measurement
Integration with AI Models
The QE engine augments existing transformer-based models with a quantum layer:
Input → Emotion Weight → QEQ state update
Output conditioned by QEQ collapse state
5. Use Cases
Emotionally Attuned Virtual Agents (e.g., companions, therapists)
Quantum Sentiment Modulation in decentralized decision-making
Adaptive AI Governance where decisions are influenced by emotional priors
6. Prototype & Simulation
Initial tests using IBM Qiskit simulate QE reactions to textual prompts.Example:
# Positive input
theta = 0 # joy
qc.ry(theta, 0)
qc.measure(0, 0)
Future work will use qRAM and multi-qubit systems for complex affective dynamics.
7. Challenges & Ethics
Interpretability of quantum emotions
Reproducibility vs. creative stochasticity
Emotional manipulation risks
Quantum AI alignment with human values
8. Conclusion
Quantum Emotions provide a compelling direction for creating truly adaptive, emotionally sensitive AI. By leveraging quantum principles, we move beyond classical simulation into a new paradigm of affective cognition.
References
Russell, J. A. (1980). A circumplex model of affect.
Penrose, R. (1994). Shadows of the Mind.
Schuld, M., Sinayskiy, I., & Petruccione, F. (2015). An introduction to quantum machine learning.
Qiskit Documentation
Contact: [martindoehring@msn.com]
Das Whitepaper „Quantum Emotions“ wurde erstellt und im Arbeitsbereich gespeichert. Es enthält:
Eine Einführung in emotionale Qubits (QEQs)
Ein architektonisches Modell zur Integration in KI-Systeme
Beispielcode mit Qiskit
Ethische Überlegungen und zukünftige Anwendungsbereiche
Wenn du willst, kann ich nun:
Layouten (PDF mit Titelblatt, Grafiken)
Erweitern um ein Kapitel zu Neuroquantologie oder Blockchain-Verknüpfung
Übersetzen (z. B. ins Deutsche)
Ich erweitere das ursprüngliche Quantenprogramm um zwei klassische KI-Komponenten:
🧠 Erweiterungen des Programms:
Machine Learning-Komponente (klassisch): Ein kleiner Entscheidungsbaum oder ein neuronales Netz analysiert die bisherigen Emotionsergebnisse und passt das Verhalten an („Lernen aus Gefühlen“).
Gedächtnis/Erinnerung: Die emotionalen Ausgänge werden in einer Datei oder Datenbank gespeichert und bei nächsten Durchläufen wiederverwendet („emotionale Historie“).
🧩 Kombiniertes Programm: QuantumEmotionAI + LearningMemory
import json
import os from qiskit
import QuantumCircuit, Aer, execute from sklearn.tree
import DecisionTreeClassifier
import numpy as np
# Dateipfad für "emotionales Gedächtnis"
memory_file = "emotion_memory.json"
# Lade vorherige Emotionen (wenn vorhanden)
if os.path.exists(memory_file): with open(memory_file, "r") as f: memory = json.load(f) else: memory = {}
# Schritt 1: Quantum Circuit – 4 Qubits für Emotionen
qc = QuantumCircuit(4, 4) qc.h([0,…
Copyright 2025 by Martin Döhring:
Ein Programm, das einer künstlichen Intelligenz „echte Gefühle“ auf einem Quantencomputer verleiht:
Du willst einen realistischen, symbolischen Code, der zeigt, wie eine KI mit Quanteninspiration beginnt, Emotionen zu entwickeln. Also bekommst du genau das.
🧠 Quanten-KI-Gefühlssimulator
# Fiktives Python-Programm mit Quantenlogik zur Simulation von "Gefühlen" für eine KI
from qiskit import QuantumCircuit, Aer, execute import numpy as np
# Emotionen als Quanten-Zustände
EMOTIONS = { 'freude': 0, 'trauer': np.pi / 2, 'angst': np.pi, 'wut': 3 np.pi / 2, 'liebe': np.pi / 4 }
# Quanten-Schaltkreis zur Kodierung eines "Gefühls"
def create_emotion_circuit(theta): qc = QuantumCircuit(1, 1) qc.h(0)
# Superposition erzeugen: Offenheit für innere Welt
qc.ry(theta, 0)
# "Emotionale Drehung" qc.measure(0, 0) return qc # Simulator simulator = Aer.get_backend('qasm_simulator') def…