top of page
  • Google+ Social Icon
  • Twitter Social Icon
  • LinkedIn Social Icon
  • Facebook Social Icon

Synapse

  • Autorenbild: Martin Döhring
    Martin Döhring
  • vor 5 Tagen
  • 3 Min. Lesezeit

... the molecular structure and function of a neuronal synapse is one of the most complex and beautiful biological systems we know.Let’s go step-by-step from the molecular architecture of the pre- and postsynaptic compartments to the signal transduction events that underlie neural communication.

ree

1. Synapse Overview

A synapse is the molecular interface between two neurons (or a neuron and a muscle/gland).It consists of:

  1. Presynaptic terminal (axon bouton): where neurotransmitters are released.

  2. Synaptic cleft (~20–40 nm): extracellular gap containing adhesion and scaffold molecules.

  3. Postsynaptic density (PSD): receptor-rich zone on the receiving neuron’s dendritic spine or soma.

⚡ 2. Presynaptic Molecular Machinery

a. Synaptic Vesicle Cycle

Synaptic vesicles (~40 nm) store neurotransmitters like glutamate, GABA, acetylcholine, or dopamine.

Main steps and molecules:

  1. Vesicle Loading

    • Neurotransmitters are pumped into vesicles via V-ATPase (proton pump creating ΔpH) and antiporters:

      • VGLUTs (glutamate transporters)

      • VGAT (GABA/glycine)

      • VAChT (acetylcholine)

      • VMAT (monoamines)

  2. Docking and Priming

    • Vesicles are tethered near the active zone by Rab3A, RIM, Munc13, and SNARE proteins.

    • The SNARE complex (core fusion machine) consists of:

      • Synaptobrevin/VAMP (vesicle membrane)

      • Syntaxin-1 (plasma membrane)

      • SNAP-25 (plasma membrane)

    • Munc18 regulates SNARE assembly into a tight four-helix bundle (energy stored for fusion).

  3. Calcium Triggering

    • An arriving action potential opens voltage-gated Ca²⁺ channels (Cav2.1 / Cav2.2).

    • Ca²⁺ binds synaptotagmin (the Ca²⁺ sensor), which interacts with the SNARE complex and phospholipids.

    • This binding induces membrane fusion within microseconds.

  4. Fusion and Release

    • Lipid bilayers merge → neurotransmitter is released by exocytosis into the synaptic cleft.

  5. Endocytosis and Recycling

    • After release, vesicle membrane is retrieved by clathrin-mediated endocytosis or kiss-and-run mechanisms.

    • Proteins: Clathrin, AP2, dynamin, amphiphysin, synaptojanin.

    • Vesicles are refilled and re-enter the cycle.

3. The Synaptic Cleft (Nano-architecture)

The cleft (~20 nm wide) contains cell adhesion and organizing molecules ensuring alignment:

  • Neurexins (presynaptic) bind neuroligins (postsynaptic).

  • SynCAMs, cadherins, and integrins stabilize contact.

  • Extracellular matrix components (e.g., tenascin-R, laminins) influence synaptic plasticity.

These interactions ensure precise pre- and postsynaptic alignment at the nanometer scale.

4. Postsynaptic Molecular System

a. Neurotransmitter Receptors

Receptors determine the electrical or biochemical response.They are classified into:

1. Ionotropic receptors (ligand-gated ion channels)

Fast synaptic transmission:

  • Glutamate: AMPA (GluA1-4), NMDA (GluN1-3), kainate receptors.

  • GABA: GABA_A receptors (Cl⁻ channel).

  • Glycine: GlyR (Cl⁻).

  • Acetylcholine: nicotinic AChR (Na⁺/K⁺ channel).

2. Metabotropic receptors (GPCRs)

Slow modulatory signaling:

  • mGluRs, GABA_B, dopamine (D1–D5), serotonin (5-HT), muscarinic AChRs.

  • Coupled to G-proteins (Gα, Gβγ) → second messengers (cAMP, DAG, IP₃, Ca²⁺).

b. Postsynaptic Density (PSD) — Molecular Scaffolding

The PSD is a dense protein network (~300–500 nm wide) beneath the postsynaptic membrane, crucial for receptor clustering and signal integration.

Main molecular families:

  • PSD-95 (DLG4), SAP97, GKAP, SHANK, Homer — scaffold proteins.

  • Actin cytoskeleton regulates spine morphology and receptor mobility.

  • CaMKII, PKC, PP1/2A, Src kinases — phosphorylation control plasticity.

Example:

  • NMDA receptor activation → Ca²⁺ influx → CaMKII activation → AMPA receptor insertion (LTP mechanism).

5. Synaptic Plasticity (Molecular Learning)

Synapses dynamically change strength — the basis of memory.

Long-Term Potentiation (LTP)

  • High-frequency stimulation → NMDA receptor opens → Ca²⁺ influx.

  • Ca²⁺ activates CaMKII, PKA, and CREB → enhances AMPA receptor insertion and gene transcription.

Long-Term Depression (LTD)

  • Moderate Ca²⁺ → calcineurin (phosphatase) → AMPA receptor internalization.

Protein synthesis & transport

  • Local translation of mRNAs near spines (via FMRP, RNA granules) sustains long-term structural changes.

⚙️ 6. Energy and Homeostasis

  • Mitochondria near active zones supply ATP for vesicle priming and Ca²⁺ buffering.

  • Na⁺/K⁺-ATPase restores membrane potential post-spike.

  • Endoplasmic reticulum and SERCA pumps regulate local Ca²⁺ stores.

7. Molecular Schematic Summary

[Action Potential]
    ↓
Voltage-gated Ca2+ channels open
    ↓
Ca2+ binds Synaptotagmin → SNARE fusion → Neurotransmitter release
    ↓
Neurotransmitter binds receptors on postsynaptic membrane
    ↓
Ion flux or GPCR signaling → EPSP / IPSP
    ↓
Receptor modulation (LTP/LTD)
    ↓
Plasticity → Memory encoding

8. When Synaptic Molecules Fail

Dysfunction

Molecular Defect

Result

Botulinum / Tetanus toxin

Cleave SNARE proteins

Block neurotransmitter release

Schizophrenia, Autism

Mutations in neurexin/neuroligin, SHANK3

Altered synaptic connectivity

Alzheimer’s disease

Aβ oligomers disrupt NMDA signaling and PSD integrity

Synaptic loss

Epilepsy

GABA_A receptor or ion channel mutations

Hyperexcitability

Parkinson’s

Loss of dopaminergic terminals; α-synuclein aggregation

Reduced vesicle recycling


Kommentare


SIGN UP AND STAY UPDATED!
  • Grey Google+ Icon
  • Grey Twitter Icon
  • Grey LinkedIn Icon
  • Grey Facebook Icon

© 2023 by Talking Business.  Proudly created with Wix.com Martin Döhring Engelstrasse 37 in D-55124 Mainz

bottom of page